
Int. .I Heat Mass Transfer. Vol. 19. pp. 1415-1423. Pergamon Press 1976. Printed in Great Britain 

THEORETICAL ANALYSIS OF STEADY AND TRANSIENT 
OPERATION OF INTERNALLY ENERGISED POROUS ELEMENT 

UNDER PHASE CONVERSION AND VAPOR SUPERHEAT 

DAVID MOALEM and SHIMON COHEN 

Department of Fluid Mechanics and Heat Transfer, School of Engineering, Tel-Aviv University. Israel 

(Received 17 December 1975) 

Abstract-The major parameters affecting the performance of internally energised porous reactor are 
theoretically studied under the conditions of phase-conversion and vapor superheat. Thus, three regions: 
liquid, saturated liquid-vapor mixture and superheated vapor, separated by two phase-change “interfaces” 
are assumed. The analysis treats a classic hollow cylindrical unit in steady-state and transient operation 
for a representative range of the viscous flow regime. The study into the transient part of the problem is 
to follow the “interfaces”, in space and time, the exit temperature and the evaporating mass flow rate 
(or the element heat load). The steady-state solution yields the characteristics in stable operation. The 
understanding of both the steady and transient solutions leads to a wide insight in determining the 

significant design parameters and possible areas of improving the performance. 

NOMENCLATURE 

Cl, C2, constants of integration (equation 14a); 

C P’ 

c PI..) 

D. 
Ja, 
k, 
k T, 

m, 
ni, 
M, 
N, 

P? 
p, 
Pe. 

43 

specific heat; 
liquid to vapor specific heat ratio (CpJCp,); 

dimensionless group (= Cpti/2nkT); 

Jacob number [ = Ip,/Cplpl(To - TJ]; 

thermal conductivity; 

effective conductivity of the saturated 
matrix; 

mass flow rate; 
dimensionless mass flow rate 

[= ti/p12(r0-ri)]; 
dimensionless group, equations (14b); 
dimensionless rate of heat generation 

pressure; 

dimensionless pressure [ = (p - po)/(pi - p,)]; 
P&let number [ = i$ro - rJ/al] ; 
rate of heat generation per unit time per 
unit volume; 
radial coordinate; 
dimensionless radial coordinate 

[= r/k.-ri)]; 

ratio (= Q-/cc~,I); 
time ; 
temperature; 
reference temperature (= T*); 

radial velocity; 
overall average Darcy-velocity 

(=%F), equation(4); 

dimensionless Darcy-velocity (= v,/i$ 

Greek symbols 

% thermal diffusivity; 

P? density; 

PLU, liquid to vapor density ratio (= pJp,); 

K, permeability of porous structure; 

1, latent heat of vaporization: 
1 nr eigenvalues; 

0, dimensionless temperature 

[=(T-T*)/(T,-V]; 

P, viscosity ; 
V, kinematic viscosity (= p/p); 

VI,“? liquid to vapor kinematic viscosity ratio 

(= v&,); 
E, porosity; 

‘5, dimensionless time [ = c(~,I t/(r.- ri)“]. 

Subscripts 

av, 
c, 
d, 
“f? 
1, 

1, 
0, 

r, 
t, 
T 
L 1, 

V, 

VU, 
* 

a, 

average value; 
start of evaporation; 

end of evaporation; 
fluid (liquid or vapor); 

internal side of cylinder; 
liquid; 

external side of cylinder; 
radial; 

transient; 

effective property; 
effective property of matrix saturated with 
liquid; 
vapor; 
liquid to vapor ratio; 

saturation state (superscript); 
at infinite time (steady-state). 

INTRODUCTION 

THE CONCEPT of internally energised porous medium 
is of interest in various application areas. These include 
nuclear fuel, cladding and shielding, solar collectors, 
compact regenerator design, Boiling Water Reactor 
design etc. Also, the short residence time for fluid 
passing through the porous element is a feature which 
may lead to its use in various chemical engineering 
processes. 

1415 
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The present study deals with the use of fluid flow 

through internally heated porous medium, in particular 

in connection with the novel methods of energy pro- 
duction. The solid particles forming the porous struc- 

ture may be nuclear or electrically heated. Heat may 
be generated also due to the absorption of radiation. 
The fluid passed through the heated porous medium, 

may change phase from liquid to vapor and the vapor 
be further superheated. In particular, where high 

coolant rates are required, the principle may prove 

useful due to the minor specific volume and high heat 
absorbing capacity of a coolant under phase conversion 
and vapor superheat. The enormous specific surface 

area enables high specific ratings even with small tem- 
perature driving forces between the solid and the fluid. 

Internally heated, porous element may also be 
applied for the production of steam of variable con- 

trolled quality (e.g. in food processing and pharma- 
ceuticals). 

Most previous studies are related to drying or 
transpiration coolingsystems [l-lo], which are usually 
subjected to a prescribed temperature or heat flux at 
their surfaces. There appears to be little information 
available on the important problem of coupled heat 
and mass transfer in porous media with internal heat 
generation [3,1 I-- 141. A steady-state solution of the 

heat-transfer rates in porous media with temperature- 

dependent energy source has been recently presented 
by Moalem [15]. The concept of generating internal 
heat of a temperature-dependent rate seems to be 
promising in concern to stability of operation and long- 
life element due to the dynamic self-control, which 
such an element possesses. 

The present study is an extension of earlier work 

[15] and constitutes an attempt to evaluate the heat- 
transfer characteristics of internally heated porous 
elements in steady and transient operations. 

A unit of a hollow porous cylinder is considered, 
where the flow may be from either the inside or the 

outside. The liquid feed is firstly heated until its exit 
temperature reaches saturation. Following this heating 
period, partial evaporation starts and a phase-change 
“interface” is thus formed and moves inwardly, while 
a mixture of saturated liquid and vapor leaves the 

element. As a complete evaporation is achieved a 
superheating of the vapor takes place. Thus, two phase- 
change “interfaces” are assumed to exist in the super- 
heating period, rather than an evaporation front sep- 
arating a vapor region from the liquid region. The 
inward phase-change “interface” denotes the average 
distance where evaporation starts while the external 
one denotes the average distance where complete 
evaporation is reached. 

The study into the transient part of the problem will 
be to follow the “interfaces”, in space and time, the 
exit temperature and the mass flow rate (or the element 
heat load). The steady-state solution will be to yield 
the variation of the element heat load with the strength 
of the energy source. The understanding of these is 
important in predicting the performance of such an 
element. 

THE THEORETICAL MODEL AND GOVERNING 
EQUATIONS 

Consider a unit of a hollow porous cylinder Fig. 1. 
The inner and outer radii ar ri and ro, respectively. 
Liquid at temperature ?;: and pressure Pi is continuously 
fed to the center of the cylinder. The liquid is assumed 
to flow radially outwards through the porous medium 
by an imposed total pressure gradient (pi-p~), where 
P, is a constant pressure maintained at the outer 

Liquid 
feed 

FIG. 1. Schematic presentation of physical system 
and coordinates. 

surface of the cylinder. In the pressure gradients con- 
sidered here, the flow is slow enough so that the viscous 
forces dominate over the inertia forces. Because of the 
complex structure of the porous medium it is impossible 
to formulate the problem in terms of the actual flow 

through the pores. Thus, as in most studies on the 
viscous regime flow through porous medium, the 

Darcy’s law is assumed applicable: 

K dp 

rr= -3 

where K is the permeability of the porous material, pJ 
is the fluid viscosity, P, and dp/dr are the radial velocity 
and the radial pressure gradient, respectively. The use 
of equation (1) is restricted to a small appropriately 
defined Reynolds number: 

(pcd/d < 1 

where d denotes an average pore diameter. 
Under transient conditions, a modified Darcy’s law 

is sometimes used [16,17] in the form: 

(71; ___+“r = -1. “P 
?t K /I/ (?r 

where pf is the fluid density and K/V is the viscous time. 
The latter, except for the first fraction of second is 
small enough so that the term du/& may be neglected. 

Energy is generated in the medium at an arbitrary 
volumetric rate 4, After time interval t: (measured 
from the start-up of the heat generation) the tempera- 
ture at the outlet side reaches the boiling point of the 
liquid, and evaporation may take place within the 
medium. If the rate of heat generation is large enough 
the liquid feed is completely converted to saturated 
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vapor (at time t,*) and the saturated vapor is further 
superheated until steady-state is reached. It is assumed 

that the regions of different phases are “separated” by 

two phase-change “interfaces”, the first of which (at I,) 
denotes the average distance where evaporation starts 
and the second (at rd) denotes the average distance 
where complete evaporation is reached. The liquid 
passed through the heated porous medium, is firstly 
heated to saturation state in region I, changes phase 
from liquid to vapor in region II, and the vapor is 
further superheated in region III to an exit temperature 

T,, greater than the saturation temperature of the liquid 
corresponding to the pressure p.. The temperature and 
pressure at the evaporation region are the saturation 

temperature and pressure T* and p* respectively, where 
p0 < p* < pi and T*(pi) < T*(p*) < T*(p,). For the 
case under consideration where equation (1) is appli- 
cable, the total pressure gradient is relatively small. 
Hence, T*(pi) z T*(p,), and the saturation temperature 
at p* is firstly approximated by T*@i +p,,/2), and is 
corrected by solving for the pressure distribution. 

Consistent with slow flow through the porous 

medium it is reasonable to assume that the temperature 
of the solid and the adjacent fluid are equal. Thus the 

heterogeneous solid-fluid system is treated as a con- 
tinuum, which allows average or “macroscopic” 
governing equations to be applied. In order to apply 
an average energy equation, it is necessary to determine 
an effective thermal conductivity of the saturated 
porous medium. Hashin and Shtrikman [18] derived 

an equation for the upper and lower bounds of the 
effective conductivity of heterogeneous materials, and 
[19-231 discussed the prediction of effective conduc- 
tivities. For the problem under consideration, the upper 
bound from [18] is utilized to evaluate the effective 
conductivity for the saturated matrix (taking an upper 

and lower bound will yield limits on the solution of the 
problem). The average energy equation can be written 
in the form [7. 161: 

where q is the rate of heat generated within the porous 
structure per unit time per unit volume, kr and (PC,), 
are the effective conductivity and heat capacity of satu- 

rated matrix. Consisting with assuming equal fluid and 
solid temperatures, the latter is given by: 

(f C,), = (1 -E)(PCp)sol,d + &f,huid 

where E is the porosity of the matrix. 

The equation of continuity may be written in the 

form [ 16,241 

(3) 

withfdenotes for the fluid. 
We now define the following dimensionless variables: 

R = rl(r, - ri), P = (p -po)/(pi - p.), Q = (T- T*)/( T, - 7i) 

h’ Pi-PO 
~=__----- V = U/C, it2 = liz/[pC(ro - ri)] 

PI Q-r0 

Ja = 
AP" F(r, - li) UT,lf 

cPlPl(T,- T)’ 
Pe=- __ 

aI ’ TT = (r,_ri)2 

D _ tikk, N = q(ro -d2 N = NfrR%) 
T Vi-TTkT' R o 1 

P1.c = PIIPU, \‘I,” = W/V”, cp,,. = cp,/cp, 

kT kT,I 
aT = (pc,)T 9 UT.1 = (PC,)T,r 3 s = ~TbT.l (4) 

where the subscripts 1. u refer to liquid and vapor 
respectively, T to an overall effective property of fluid 

and solid and (T, I) refer to an overall effective property 
of the matrix saturated with liquid. With reference to 

the above, the continuity, motion and energy equations 
are transformed to dimensionless forms: 

de d20 1-D d0 
Sds=dRZ+RdR+N (7) 

where S = 1 is for the liquid region and S = C(+T,i is 

for the vapor region. 
The initial value and the boundary conditions appli- 

cable to this problem are: 

Ri < R 6 R,, P = P(R), Q = 0;. t < 0 (84 

R = Ri, P = 1.0, 0 = Bi, r > 0 (8b) 

R = R,(T) or Rd(r), P = P*. 0 = 0, z > 0 (8~) 

and either of: 

d20 
R=R,, P=O, -=O, T>O 

dR2 
(8d’) 

R= R,, P=O, f3= 0,. r>O (8d”) 

R= R,, P=O, ;=O, r>O (8d”‘) 

where R, and Rd are the dimensionless phase-change 
“interfaces” position, (see Fig. 1). 

Acutally, because of the thermal conductivity of the 
fluid, the fluid temperature will probably rise slightly 
before it enters at R = Ri. However, the dispenser 
which is usually placed before the heated porous 
element reduces the effect of the heated solid on the 
inlet temperature of the incoming feed. Also, the heat 
transfer to the surroundings by radiation and convec- 
tion from the shown-side of the element is negligible. 
Solutions with either of (8d) are almost identical. In 
a previous study [15] the steady heat losses were found 
to be 2-37; of the total heat generation. Some higher 
value (8%) was reported by [25]. Thus, either of (8d) 
is used with constant inlet temperature, Qi, at R = Ri . 
Constant temperature at the outer-radius, R,, can be 
maintained by the external vapor chamber. The evap- 
oration in the intermediate region is assumed to pro- 
ceed at constant temperature and pressure. This is 
reasonably valid in the case under consideration, where 
the total pressure gradient is by itself relatively small. 
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(A) Steady-state operation 

DA~II) MOALEU an 

Solutionjbr the mass,flux. The solution for the mass 
flux may analytically be obtained by assuming constant 
properties. This assumption is reasonable under the 
conditions of low superheat and small pressure 

gradient. 

Substituting equation (6) into (5) and integrating. 
using the boundary-conditions in equation (8’ yield 
the pressure distribution in the liquid and vapor 

regions : 

pl= I-(I-p*,In’RiR~’ 
In(R,.R,) 

p = p* ‘“(RIR!~ 
ln(R,iR,’ 

(9a’ 

(9b’ 

The mass flux in each region is given by: 

Ii2 = 27w, ,J,. 

or in dimensionless form : 

I IOa’ 

(lob) 

where P/ (or I/) is the Darcy velocity as is defined by 
equation (1) [or equation (6)] and by the local pressure 
gradient (dpjdr). When the latter is evaluated from 
either of equations (9) and is combined with equations 
(6) and (lob) the following are obtained: 

(I la) 

Since steady-state is considered the mass fluxes in the 
liquid and vapor regions are identical. Equating equa- 

tions (1 la) and (1 lb) yields the saturation pressure: 

Equation (12) is used now to eliminate P* in either of 
equations (11). This yields the dimensionless mass flux: 

hi, = hi,. = Zn/[ln(R,/Ri)+ In(R,;Rd’]. (13) 

Note that once the “interfaces” position R, and Rd are 
evaluated, equations (9) and (13) may be used to 
evaluate the pressure distributions and the mass flux 
through the porous medium. 

Solution of the energy equation. In the case under 
consideration, equation (7’ reduces to a linear equation 
of first order. Its solution is given by: 

f?=C, $MR2+Ci (140 

where : 

r 

N 4 ~_~~ 
2-D 

ifD#2 

M= 

t(lnR-&)ifD=2. 

(lab’ 

The constants of iintegration Ci and Cz are now 
evaluated for each of the liquid vapor regions by 

d SHIMON COHFN 

introducing the boundary-conditions as in equations 
(8). With (8d”) and D # 2 this yields: 

II, = [-ni+~r(~,Z-~;)] R$$- Ml@-R;‘+Oi, 
c I 

D#Z (15a’ 

D # 2 (15b) 

where M is as defined in (14b). The corresponding 
expressions for D = 2 are: 

+Hi, D=2 (15~) 

+&. D=2 (15d) 

The analogue solutions based on (Sd’) or (8d”” may 

easily be obtained in a similar way. 

(B) Transient solution 
Based on the fact that as T --t X. the system ap- 

proaches a steady state, the transient solution is split 
into a limiting solution, B,(R) at t + Y_ and a transient 
function, O,(R. T): 

O(R. T) = B,,(R)- B,(R. t’. 

Introducing equation (16) into (7) yields: 

(16’ 

do, 1 -D do, d2U, 
-= 
dz 

-R-c+$. (17’ 

The general solution of equation (17) is 

&IR. T) = c C,RU:ZZgt2(j.,R)exp( -#r/S) (18) 

where the cylindrical function Z is a linear combination 
of the Bessel functions of the first and second kind and 
of order D/1 : 

Z&&R) = C~JDQ(~.,R)+ C2 YD/~(I,R). (19) 

The appropriate boundary-conditions for Q1 are ob- 
tained by combining equation (8) with equation (16). 
The constants and eigenvalues are now evaluated 
according to the conditions at the boundaries of each 
region : 

Firstly, the liquid is heated until the exit temperature 
(at R,) reaches the saturation point. In this time- 
interval. denoted here as the heating period. the tem- 
perature difference between the porous element and its 
environment is relatively small, hence equation (Sd”‘) 
is assumed to hold. With 

Ci = Y;,,z(i.Ri) and C2 = -JD,,2(2nRi) (20a) 

the function 0, satisfies the condition at the liquid entry. 
equation (8b’. The corresponding eigenvalues i,. are 
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the positive roots of the characteristic equation 

[obtained from equation (gd”‘)]: 

J~D,,Z,-l(~““R,)Yo,,2(l”Ri) 

-JD,,z(l,Ri)~Dl,z,-1(1,R,) = 0. (20b) 

In the superheating period, when two phase-change 
“interfaces” exist the appropriate boundary-conditions 
for each region are similarly used : 
For the liquid region again 

Cr = Yn,,z(;i,Ri) and Cz = -JD1/2(;1,Ri) @la) 

while the characteristic equation 

JDl,z(i,R,)~,!z_50,12(;1,Ri)YD1,2(~nRc) = 0 (2lb) 

is now obtained from the condition at R = R,. 
Similarly, with 

the conditions at the boundaries of the superheating 
region are satisfied. 

Applying now the orthogonality of the cylindrical 
function with the initial condition t&(0, R) = B,(R) -0; 
yields the constants C’, : 

r B,(R, 0)R1-D’2Ze,2(&R)dR 

c, = J (23) 

Note that the integrationsin equation (23) are carried 
out with the use of formula given in [26] and in the 
appropriate instantaneous range of either liquid or the 
vapor phase. Also, equations (2Ob, 21b, 22b) are 
numerically solved. 

CALCULATION PROCEDURE AND PRESENTATION 
OF CALCULATED RESULTS 

The main parameters affecting the performance of 

such an element are (a) the rate of heat generation 
within the solid, (b) the rate of flow of working fluid, 
(c) the degree of pre-heating of the incoming liquid 

feed and(d) the degree of superheat of outcoming vapor. 
These are presented in the following for a constant 
rate of heat generation. However, since the results are 
obtained numerically, it is interesting to note the point 
values of the basic variables R,, Rd and the temperature 
profiles through the various regions. 

To have a clear idea of the results obtained we shall 
consider, as an example, water as a working fluid and 
a hollow cylindrical porous element of a constant 
porosity (= 0.39) and inner and outer radii of 1.0 cm 
and 2.0cm. Thus the dimensionless radii Ri, R, are 
1.0 and 2.0 respectively. 

The pressure distribution (equations 9), the mass flux 
(equation 13) and the tem~rature profiles (equations 
15) require the values of R, and Rd. These are evaluated 
by utilizing the following energy balances on the 

different regions of the element: 

dt 
-ny(rt-r,Z)-271kT,Ir- 

dr r=*i 
(244 

= ny(r~-rf)+**k,,,.,g 
dr irzrd (24b) 

?iz&, hf. - 

i 

drd 
ti, - h& rd -- 

dt ! 
hf 

dT 
= ny(r,‘--ri)-Zxkr.,r- 

dr r=,d (24c’ 

dT 

where I7 denotes enthalpy and superscripts i. o, * refer 
to inlet, outlet and saturation temperature, respectively. 

Note that only three of the above relationships are 
independent. These may be simplified by neglecting 
the conduction fluxes ( = - krdT/dr) at the boundaries 
ri. rC. rd and ro, Exact calculations by one of the authors 
[15] show that the boundary fluxes are fairly small 
compared to the rate of heat generated within region I 

where the liquid is heated to saturation, and region II 
where the saturated liquid evaporates. Reasonable 

accuracy (1.2552.6”!,) was achieved by utilizing the 
energy balances over these two regions, combined with 
the overall energy balance. 

The calculation procedure for transient operation is 
as follows: Firstly, the liquid is heated while it passes 
through the heated element, until the exit temperature 
at R, reaches the saturation temperature, T* at time 
t = rf. For all t < tf use is made of equations (18)-(20) 
in calculating the transient temperature profiles. 

As the liquid reaches saturation at R,. partial evap- 
oration starts. The first phase-change “interface”, R, is 

now formed and starts to move inwardly, while a 
mixture of saturated liquid and vapor leaves the 
eiement at R,. Integration of equation (24a) (with 
Rd = R,) yields the variation of the interface. R, with 
space and time. Simultaneously, an overall heat balance 
[similar to equation (24d)] yields the quality of the 
saturated mixture at the exit. Calculation proceeds 
until a complete evaporation is achieved. At this point, 
tf superheating of the saturated vapor starts. 

As superheating of vapor takes place one more 
equation is available (equation 24c), which is used now 
to evaluate the corresponding Rd. Note that the vari- 
ation of Rd with time is relatively small in this interval 
and dR,/dt can be neglected or averaged in equation 
124) in order to facilitate the computation. The small 
variation of Rd with time is substantiated by the fact 
that the value of Rd (at steady state) is very close to 
R, for low and intermediate superheat [15]. 
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Jo =6.35 xIOv3 

N,=l4.20 

-066 
0 I.25 I 50 175 200 

Dimensionless radial coordinate, R 

FIG. 2. Development of temperature profile for 
Ja = 6.35 x 10-3, IVY = 14.20. 

Ja = 8.47~10~~ 

-I ol I I I 
0 I 25 1.50 1.75 2 .oo 

Dimensionless radial coordinate, R 

FIG. 3. Development of temperature profile for 
Ja = 8.47 x IO-‘, NE = 26.05. 

Figures 2-4 demonstrate the transient temperature 
profiles for various time intervals before the liquid 
reaches its saturation point (t < @), at time the liquid 
reaches saturation (t = tf) and at time saturated vapor 
is obtained (r = t:). Also included in the figures are the 
steady-state profiles. The two parameters being 
changed are the Jacob number which represents an 
indication for the overall temperature difference 
(x-- ‘&) and the required degree of superheating at 
steady-state operation, 8,. 

Ja=1.27x10-* 

Nfl= 68.26 

$*337x 10-2 +9.9x10-3 
,_-..----- 

g 
5 

-08 ,’ Y I 5x 10-3’ 

0, 

F \ 
-I 0 I I I 

IO I 25 150 175 2. 

Dimensionless radial coordinate, R 

FIG. 4. Development of temperature profile for 
Ja = 1.17 x IO-‘. NR = 68.26. 

Note that the intersection of the temperature profile 
at I = tf with the line of 0 = 0 represents the position 
of the inward phase-change “interface” (R = R,) at the 
moment thesuperheatingregion is just starting to build 
up (Rd = 1.0). The corresponding intersections of the 
steady-state curve denote the values of R, and Rd when 
the three regions are steadily established to yield the 
required degree of superheat, 0,. As is indicated in the 
figures, the superheating region is larger for higher 
degree of superheat. 

In view of equation (13) the possible mass flux 
through the porous element is determined by the 
position of the two phase-change “interfaces”, R, and 
Rd. The variation of these with the dimensionless time 
and the corresponding variation of the simultaneous 
mass flux are presented as an example for Jtc = 8.47 IO- ’ 
in Figs. 5 and 6. As is undulated in Fig. 6, the flux is 
constant in the preheating period (t < @) and is rapidly 
increasing due to the fast inward movement of the 
liquid phase interface, R, at r > r: (see Fig. 5). At I = r$ 
the rate of variation of R, is relatively small, while the 
mass flux starts decreasing due to the pressure gradient 
which is now developed in the third superheating 
region. 

The dimensionless temperature at the outlet fi(?, R,) 
is normalized now with reference to its value at steady- 
state conditions, B,, and the variation (Fig. 7) of the 
fraction @z,R,)/U, is plotted with the dimensionless 
time for various operating conditions. IVote that the 
approach of that fraction to unity represents the 
approach of system performance to steady-state 
operation. 

Brady-state ~~erati~~ 
in steady-state operation (dR,/dt = dRd/dt = 0), one 

can easily eliminate Rd from the first two of equations 
(24): 
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Substituting M and Rd into equation (24d) yields: 

/ =8.47~10-~ 
k&=0.933, &- 16.15 

\ 8,* 0.933, N&6.15 
i I 
IO 2.0 

Dimensionless time, T 

FIG. 5. Instantaneous position of the two phase-conversion 
“interfaces” for Ja = 8.47 x 1OT-3 at various NR. 

Ja =8.47x IO+ 

I 1 
005 0.10 

Dimensionless time, T 

FIG. 6. Variation of radial mass flow rate with time for 
Ja = 8.47 x 10e3 at various NR, 

Jo =847xlO-’ 

IO- 
&0400, N,+X5 

-12 
i , 

0 
, 

005 WI 015 020 
Dimensionless time, T 

FIG. 7. Variation of the outlet temperature with time for 
Ja = 8.47 x lOa at various fVR_ 

x (lnfR,/R? -pz,,f4R: -R?YQi)] 

-Al,, ln(R,/‘RJj = 0. (26) 

Starting with initial guess for R,, equation (2.5) is used 
to evaluate Rd. Based on these R,, Rd values, the 
corresponding q (or N) is calculated by equation (24b). 
The calculated N is inserted into equation (26), the 
solution of which yields a new value of rr which is 
compared with the previous one, until convergence is 
achieved, 

Figure 8 represents the dimensionless radial distance 
of the two phase-change “interfaces“ for various degrees 
of superheat and various values of Jacob number. Note 
that as 0, --* 0 (or Bi + - 1.0) the outcoming vapor is 
at saturation temperature T*, and hence Rd -+ R,. As 
&, -+ 1.0 (or Bi -+ 0) the incoming liquid is at the satu- 
ration temperature T*, and hence R, -+ Ri. 

~ 

2 

-2 

.3 I 

i3 

-I’ 

1.0 

.9 

.a 

Dimensionless degee of superheat, @a 

FIG. 8. Steady position of the two phase-conversion “inter- 
faces” for various parameters. 

The corresponding variation of the dimensionless 
mass flux with the degree of superheat is shown in 
Fig. 9. Also included in these figures the dimensionless 
rate of heat generation, NR. As the degree of superheat 
is increased, the phase-change “interface”, R,, moves 
inside while R, remains almost unchanged. Thus, the 
mass flux and hence the required rate of heat generation 
should both decrease (see equation 13). Similarly, for 
low superheat, the increase in R, brings about a corre- 
sponding increase in the mass flux. 

The mass flux and the rate of heat generation deter- 
mine the values of the dimensionless groups D and N 
which appear in the temperature profiles. Typical 
steady temperature profiles for high, low and inter- 
mediate superheat are represented in Fig. 10. Note that, 
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ao- 

\ 

60- 

40: 

\ 

. 

20% 

0 

\ 
---_N 
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FIG. 10. Steady-state temperature profiles within the porous 
element for various parameters. 

&denotes the temperature variation in the liquid heat- 
ing region and 0, corresponds to the temperature 
variations in the superheating region. The interaction 
of 0, and 8, curves with the saturation Iine (6 = 0) 
indicates the values of R, and R,+, respectively. 

FINAL REMARKS 

A theoretical analysis of internally energised porous 
reactor has been presented. The analysis is applicable 
for predicting the characteristics of a porous reactor 
producing vapor where small quantities of variable 
controlled superheatings are required. The principle 

may also be applied for cooling of nuclear particles by 
evaporating high latent-heat &id while ffowing 
through the particles bed. 

The study presented here is restricted to low flow 
rates of coolant through the porous medium. An 
extended analysis for high flow rates and a temperature- 
dependent heat-generation rate is now underway. 
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ANALYSE THEORIQUE DU FONCTIONNEMENT STATIONNAIRE ET 
TRANSITOIRE DUN ELEMENT POREUX AVEC APPORT INTERNE D’ENERGIE EN 

PRESENCE DE CHANGEMENT DE PHASE ET DE VAPEUR SURCHAUFFEE 

Resume-Les principaux parametres qui agissent sur le fonctionnement d’un rtacteur poreux avec apport 
interne d’energie sont ttudiis theoriquement dans des conditions de changement de phase et de vapeur 
surchauffee. Ainsi, on distingue trois regions: le liquide, le melange liquide-vapeur saturee, la vapeur 
surchauffee, s&par&es par deux “interfaces” de changement de phase. 

L’analyse traite d’une unite cylindrique creuse classique en fonctionnement stationnaire et transitoire 
dans un domaine representatif du regime visqueux. L’etude de la partie transitoire du probleme consiste 
a suivre les “interfaces” dans I’espace et dans le temps, la temperature de sortie et le taux d’ivaporation 
(ou la chaleur contenue dans l’element). La solution stationnaire fournit les caracttristiques en fonctionne- 
ment stable. La comprehension de ces deux regimes permet de donner un eclairage nouveau a la 
determination des parametres significatifs de construction et des domaines possibles d’amelioration des 

performances. 

THEORETISCHE ANALYSE STATIONARER UND INSTATIONARER 
VORGANGE IN PORGSEN KGRPERN MIT WARMEQUELLEN BEI 

PHASENUMWANDLUNG UND DAMPFUBERHITZUNG 

Zusammenfassung-Die Hauptparameter, die das Verhahen poroser Reaktionskorper mit Warmequellen 
beeinflussen, werden theoretisch untersucht unter der Bedingung von Phasenumwandlung und Dampf- 
iiberhitzung. Es werden drei Bereiche postuliert : Fhissigkeit, gesattigtes Fliissigkeits-Dampfgemisch und 
iiberhitzter Dampf: sie sind durch zwei Phasenlnderungsschichten getrennt. 

In der Analyse wird die klassische Hohlzylindereinheit bei stationarer und instationarer Arbeitsweise 
behandelt fiir einen reprlsentativen Bereich viskoser Stromungen. Bei der instationaren Betriebsweise 
werden die “Phasenlnderungsschichten” in Raum und Zeit verfolgt sowie die Austrittstemperatur und 
die Verdampfungsrate (oder die elementare Wlrmebelastung). Die stationlre Losung liefert die Charak- 
teristika fur stabiles Betriebsverhalten. Das Verstlndnis beider Losungen liefert neue Einsichten zur 
Bestimmungder charakteristischen Auslegungsparameter und mijgliche Verbesserungen der Betriebsweise. 

TEOPETM~ECKMfi AHAJIM3 CTADMOHAPHbIX M HECTAIJMOHAPHblX 
PEXKMMOB PABOTM IIOPMCIOFO 3JIEMEHTA C BHYTPEHHMM 

3HEPI-OIIOABOJIOM I-IPM QA3OBblX IIPEBPAIIIEHMJIX M 
IIEPEI-PEBE I-IAPA 

AHHoTauHn- ~eO~eTH~eCKHaHafl~3~~y~TC~OCHOBHbIena~aMeTpb1,B~HR~UIUeHa~e~MMbl~a6OTbI 

nOpkiCTOr0 PeaKTOpa C BHyTpeHHAM sHepI-OnOABOAOM npH (Pa30BbIX npeapaUIeHHaX H IlcperpeBe 

napa. kiCCJleAykOTCfl TpW o6nacra C AByX$a3HbIMH rpaHHuaMH pa3Aefla: W(HAKOCTb, HaCblLUeHHal 

napo-xoinKocrttan cMecb, a raKle neperperbrfi nap. PaccMarprmaercs Knaccrirectoifi cnyraA nonoro 
UWlMHApa B CTaUHOHapHblX H HeCTaUHOHapHbIX yCJlOBHaX TeYeHHa Bfl3KOii WOFiAKOCTH. M3yWHHe 

HeCTaUHOHaPHblX yCJlOBHfi 3aAaYH CBOAHTCCR K paCCMOTpeHAk3 nOBepXHOCTei? pa3AeJla B npOCTpaH- 

CTBeR BpeMeHH,TeMnepaTypbIHaBbtXOAeapacxoAaacnapa~~e8cnMaCCbl (mm TennoeoR Harpy3KH 

Ha peaKTop). CTaukioHapHoe pememie n03nonrrer onpenennrb xapaxrepricrriks craurioiiapubix 
pemaMoe pa6orbl. Yqer 3rr4x XapaKTepHCTNK n03aomeT no-HosoMy 0npeAemTb 0cHoaHble napa- 

MeTpbI KOHCTpyKUHH A B03MO~Hblecnoco6bI yJIy'ilUeHH5l XapaKTepI,CTHK. 
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